

End to End Performance Analysis Mary Armstrong

marmstro@eos.hitc.com

2 November 1995

Overview

End- to-end performance allocation is needed to

- allocate cross-subsystem performance requirements to specific hardware, providing performance envelopes for sizing and testing;
- provide assurance that impacts of simultaneous system operations are taken into account in hardware sizing analysis
- examine anomalous conditions

This presentation addresses how end to end performance will be analyzed.

Approach

- Build "bottom-up" from subsystems, using
 - benchmarks to measure performance of specific functions
 - analysis to estimate performance of databases with respect to ECS transaction types
 - simulation/dynamic modeling to estimate complex processing functions and processing/disk interactions
- Develop scenarios to examine maximum loading conditions (e.g., 2X distribution during peak processing period) across the system
- For each system component, analyse the sum of all processing loads to develop performance envelopes
- Iterate based on software and hardware design changes, prototype results, and changes in expected loading

Sizing Subsystem Components

Performance Measurement

- CSS DCE-based services
- FDDI switch/router
- Sybase, Illustra basic transactions
- Robot
- MSS COTS

Performance Analysis

- Sybase transactions within DM, DSS, Planning
- Illustra transactions within DSS

Performance Simulation

- Science Production (CPU, I/O, disk)
- Data Server (disk, I/O, robots)
- Networks
 (processing to data server network utilization)

Push/Pull Analysis

Pull Analysis

- Map benchmark results to ECS functionality (e.g., Illustra spatial search results mapped to data server services) to obtain values for "ECS transactions"
- Map transactions to hardware components
- Apply loads via user model, given derived or assumed values for
 - # service invocations per DAAC per hour
 - size of request (data volume requested)
- Add overhead for infrastructure (CSS, MSS, O/S)

Push Analysis

- Develop push models (static and dynamic) to reflect peak and nominal resource utilization
- Perform sensitivity analysis on areas of uncertainty, including
 - reprocessing
 - processing on demand and subsetting
- Add overhead for infrastructure (CSS, MSS, O/S)

Scenario Example

- 1. Coincident Search
- 2. DAR for on-demand process (ASTER)
- 3. Ingest of Landsat
- 4. MODIS Production
- 5. Large Distribution

DMG	
Server	

APC Server

FSMS Server

stage

data

Server

Archive/ Robot

Server

Distrib.

Ingest Server

- search /access advertising database
- search /access dms database
- combine coincident data

session / working collection

 subscription processing

Queueing

Server

DBMS

- local searches mounts and
- update metadata

dismounts

 distribute products write media

• stage L0 Landsat data

Planning Server

- generate schedule production request creation
- store DPR in PDPS database

Science Processor

and de-stage

• product generation

DCE Server

- directory request
- authentication request
- authorization request

HiPPI Switch

• processor-todata server bulk data transfer

FDDI Switch/ Router

data transfer/latency times, with filters

Next Steps/Plan for CDR

Current status

- Preliminary performance allocations have been made, based on benchmark and analysis results
- Performance allocations do not take into account many new Release B services and COTs selections

Next steps

- Develop end-to-end scenarios for model implementation
- Perform additional analyses and benchmarking (e.g., Release B COTs, Sybase, Illustra new features)
- Iterate based on results, scenario variations, and different H/W design candidates

705-CD-005-001 Day 4 MA-7